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Ligand-Based Combinatorial Design of Selective Purinergic Receptor
(A2A) Antagonists Using Self-Organizing Maps

Gisbert Schneider† and Matthias Nettekoven*

F. Hoffmann-La Roche AG, Pharmaceuticals DiVision, Lead Generation, Grenzacherstrasse 124,
CH-4070 Basel, Switzerland

ReceiVed October 15, 2002

A virtual screening procedure based on a topological pharmacophore similarity metric and self-organizing
maps (SOM) was developed and applied to optimizing combinatorial products functioning as P1 purinergic
receptor antagonists. The target was the human A2A receptor. A SOM was developed using a set of biologically
tested molecules to establish a preliminary structure-activity relationship. A combinatorial library design
was performed by projecting virtually assembled new molecules onto the SOM. A small focused library of
17 selected combinatorial products was synthesized and tested. On average, the designed structures yielded
a 3-fold smaller binding constant (∼33 vs∼100 nM) and 3.5-fold higher selectivity (50 vs 14) than the
initial library. The most selective compound obtained revealed a 121-fold relative selectivity for A2A with
Ki (A2A) ) 2.4 nM, andKi (A1) ) 292 nM. This result demonstrates that it was possible to design a small,
activity-enriched focused library with an improved property profile using the SOM virtual screening approach.
The strategy might be particularly useful in projects in which structure-based design cannot be applied
because of a lack of receptor structure information, for example, in the many projects aiming at finding new
GPCR modulators.

Introduction

Novel selective purinergic receptor (P1) antagonists might
provide a basis for the treatment of neurodegenerative
diseases.1 The P1 receptor family belongs to the class of
G-protein couples receptors (GPCR) comprising the subtypes
A1, A2A, A2B, and A3 that are activated by adenosine as their
endogenous ligand.2,3 Adenosine acts as a neuromodulator,
possessing global importance in the modulation of molecular
mechanisms underlying many aspects of physiological brain
function by mediating central inhibitory effects. An increase
in neurotransmitter release follows traumas, such as hypoxia,
ischemia, and seizures. These neurotransmitters are ultimately
responsible for neural degeneration and neural death, which
causes brain damage or death of the individual. The A2A

receptor (409-412 amino acids) was cloned from various
species and has emerged as a main target within the P1

receptor family.4 It is preferentially distributed in dopamine-
rich brain regions and coexpressed with the D2 receptor, with
which it interacts in an antagonistic manner.5 A2A receptor
antagonists inhibit the motor depressant effects of dopamine
antagonists, such as haloperidol, which makes them of
particular interest for treatment of neurodegenerative disor-
ders, such as Parkinson’s disease.6

Currently, the application of virtual screening and molec-
ular design approaches relying on a detailed three-dimen-

sional model of the receptor binding pocket, for example,
automated molecular docking, is hampered by the fact that
for most GPCR, such a model is unavailable.7 Therefore,
we followed an entirely ligand-based approach. The starting
point for the project was a set of 153 combinatorial products
derived from scaffold structure1 (Scheme 1) with known
Ki values for the two adenosine receptor subtypes A2A and
A1.8,9 The idea was to rely on this information for the
development of a preliminary structure-activity relationship
(SAR) model, which could be used to virtually synthesize
novel combinatorial products with improved activity and
selectivity for the A2A subtype. For identification of best-
suited building blocks R1, R2, and R3 decorating scaffold1
(Scheme 1), a new-fangled virtual screening procedure was
followed, which is based on artificial neural networks (self-
organizing map, SOM)10,11 and topological pharmacophore
similarity (CATS method):12

1. Encoding the set of tested compounds by the CATS
topological pharmacophore descriptor,

2. Training of a SOM for feature mapping (SAR model),
3. Identification of “seed” compounds from the SOM,
4. Variation of the seed by virtual library enumeration,
5. Projection of the virtual library onto the SOM obtained

by step 2,
6. Selection of candidates for synthesis and testing (focused

library design),
7. Chemical synthesis and determination of in vitro activity

(Ki), and
8. Go to step 1 or terminate.
With the exception of step 7 of this scheme, optimization

takes place in silico. Synthesis and testing of the designed
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molecules is of great importance, because the results help
to adjust the virtual screening process and provide the
necessary information enabling selection of molecular build-
ing blocks with a high possibility of revealing the desired
activity profile. To see whether the procedure can actually
be of use in the hit-to-lead optimization, we performed a
single optimization round, resulting in an average 3-fold
increase of both bioactivity and selectivity compared to the
initial combinatorial library.

Materials and Methods

(1) Library Synthesis. Triazolopyridine derivatives have
previously demonstrated their ability to potently and selec-
tively bind to the human A2A receptor. Preliminary results
were obtained from 5-amino-7-aryl-[1,2,4]-triazolo-[1,5-a]-
pyridines.8 To further investigate the potential of close
analogues, 5-amino-1-aryl-[1,2,4]triazolo[1,5-a]pyridine-7-
carboxylic acid amide derivatives1 were synthesized with
an analogous protocol (Scheme 1).9

The required 2,6-bis-amino-pyridine-4-carboxylic acid
methyl ester2 can be synthesized according to literature
procedures,13 and the subsequent conversion to the 5-amino-
1-aryl-[1,2,4]triazolo[1,5-a]pyridine-7-carboxylic acid methyl
ester derivatives3 follows a three step/one pot procedure
commencing with the regioselective N-amination of the
pyridine nitrogen withO-mesitylenesulfonylhydroxylamine.
The intermediate can be condensed with a wide variety of
aldehydes (substituted benzaldehydes, furfurals, pyridine
carboxaldehydes, and thiophene carboxaldehydes), and sub-
sequent cyclization and oxidation under basic conditions
yielded triazolo-pyridine methyl ester derivatives3 in yields
from 18 to 51%. Conversion to the desired triazolopyridine
carboxylic acid amide derivatives3 was conveniently
performed by heating a mixture of ester3 with the respective
amine, which was premixed with AlMe3, in a solvent-like
dioxane for several hours. The purification of the library
members was routinely performed by preparative reversed-
phase HPLC.

(2) Biological Testing.The assessment of in vitro binding
data for human A2A and A1 was performed in analogy to
procedures described in the literature.3

(3) Virtual Screening. Building Block Retrieval. Sec-
ondary amines for virtual coupling to scaffolds4 and 5
(Scheme 2) were selected from the Available Chemicals
Directory, ACD (Molecular Design Limited, San Leandro,
CA). The maximum molecular weight cutoff was 200;
amides were excluded. The initial hit list of 487 molecules
was further reduced manually to a set of 96 chemically
tractable building blocks that were not included in the initial
set of 153 products derived from scaffold1.

Molecule Encoding.For SAR modeling by self-organiz-
ing networks, all molecules were represented by the CATS
pharmacophore descriptor, which is based on a topological
correlation of generalized atom types.12 The definition of
lipophilic, positive and negative charge centers, and hydrogen-
bond donors and acceptors followed the LUDI implementa-
tion.14 For five atom types, there are 15 possible pairs.
Distance between pairs of atoms was defined as the shortest
topological path connecting the two nodes in the molecular
graph. Distances up to 10 bonds were considered in the
present study, resulting in a 150-dimensional vector descrip-
tion of a molecule giving a relative frequency of atom type
pairs over bonds in the molecular graph. Raw counts were
scaled by the number of non-hydrogen atoms present in a
molecule. This molecular representation is rotation- and
translation-invariant, and thus, the problem of pairwise
structural alignment was avoided. The CATS descriptor has
been shown to be suited for database similarity searching
and de novo design in the absence of three-dimensional
conformer models.7,12,15 The idea of the topological phar-
macophore space reflects Carhart’s concept of atom-pair
descriptors.16

Self-Organizing Feature Map (SOM). For graphical
display and feature mapping, the molecule distribution in
the 150-dimensional pharmacophore space were projected
onto a plane spanned by (8× 8) 64 neurons (clusters) of a
SOM. Kohonen’s algorithm was applied to perform the
mapping procedure,10 as implemented in the NEUROMAP
package.11 As a result of this nonlinear mapping procedure,
each neuron represents a cluster of molecules having certain
features in common, that is, the molecules belonging to its
“receptive field” are more similar to each other than to any

Scheme 1.Synthesis of 5-Amino-1-aryl-[1,2,4]triazolo[1,5-a]pyridine-7-carboxylic Acid Amide Derivatives1a

a Reagents and conditions: (a) (i)O-mesitylenesulfonylhydroxylamine, (ii) R3CHO, (iii) KOH/MeOH, O2; b) AlMe3, R1R2NH, dioxane, 90°C.

Scheme 2.Seed Structures Identified for Virtual Synthesis (4, 5) and the Most A2A-Selective Product Obtained (6) Yielding
121-Fold Selectivity versus A1a

a [Ki (A2A) ) 2.4 nM, Ki (A1) ) 292 nM].
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other molecule cluster in the data set. SOM development is
comparable to Voronoi tesselation of the high-dimensional
data space, reflecting a vector quantization process. For
focused library design, virtual combinatorial products were
projected onto the SOM, and the molecules falling into the
receptive fields of selected neurons (in our project, the
neurons (3/3), (4/3), and (5/3) shown in Figure 2 became
members of the focused library.

Results and Discussion

The first step of our virtual screening procedure was
molecule encoding. Using the CATS topological pharma-
cophore descriptor, all available and tested 153 molecules
were converted to a 150-dimensional vector representation.
Then, a planar (8× 8) SOM was developed with these data,
that is, the distribution of molecules in the 150-dimensional
space was projected onto the plane by the SOM algorithm.
The projection is topology-preserving, which means that
molecules that are close to each other in the two-dimensional
projection are also in close vicinity in high-dimensional
space. Each of the 64 neurons forms a “receptive field”
containing molecules having certain pharmacophore features
in common. The averaged selectivity values of the molecules,
Ki (A1)/Ki (A2A), belonging to each receptive field are
represented in a color code in Figure 1a.

The adjacent neurons (3/3), (4/3), (4/4), and (5/3) contain
the most selective A2A antagonists, as indicated by yellow
and red coloring (Figure 1a). Because of the observation that
a small area of pharmacophore space seems to represent
characteristic molecular features responsible for relative A2A

selectivity, we decided to define neurons (3/3), (4/3), and
(5/3) as the “target area” for molecular design. The idea was
to virtually generate new compounds using “seed structures”
as combinatorial templates that are representatives of the
respective fields of these neurons. Seed structure4 was
selected from neuron (5/3); seed structure5, from neuron
(4/3) (Scheme 2). The thiazole ring of seed4 and the
bromofuran moiety of seed5 in position R3 of scaffold 1
were the only two substituents found among the set of
molecules clustered in neurons (3/3), (4/3), and (5/3). We
concluded that these two building blocks might be respon-
sible for the relatively high selectivity of the compounds for
the A2A receptor.

Having fixed position R3 in scaffold1, the next step was
the combinatorial optimization of the secondary amine
representing R1 and R2. A set of 96 secondary amines that
were not contained in the initial set of 153 products derived
from scaffold1 was retrieved from the ACD. Then, seeds4
and 5 were assembled with the 96 secondary amines, and
each virtual product was encoded by the topological phar-
macophore descriptor and projected onto the SOM. The
distribution of the compounds is shown in Figure 1b. As
expected, the majority are located close to the target area.
From the 192 virtual products, 9 fell into the respective field
of neuron (3/3), 7 molecules were assigned to neuron (4/3),
and 6 compounds fell in neuron (5/3). Of the 22 virtual
product molecules, 14 contained the seed structure5, and 8
virtual products contained seed structure4. From the 22
virtual product molecules, 5 had to be eliminated because
of unavailability or structural features considered to cause
adverse side reactions under the general reaction protocol
of the respective amines. These remaining 17 compounds
formed a small focused library that was subsequently
synthesized and tested for their activity in A2A and A1 binding
assays. Table 1 summarizes the results.

On average, the small library of 17 structures displayed a
3-fold lower binding constant (∼33 vs∼100 nM) and 3.5-
fold higher selectivity (50 vs 14) than the initial library. The
most selective compound,6, of the product library has a 121-
fold relative selectivity for A2A with Ki (A2A) ) 2.4 nM,
andKi (A1) ) 292 nM. This result demonstrates that it was
possible to design a small, activity-enriched focused library
with an improved property profile using our virtual screening
approach (Table 2). The strategy might be particularly useful
for projects in which structure-based design cannot be applied
because of a lack of receptor structure information, for
example, in the many projects aiming at finding new GPCR
modulators.

The idea of using SOMs for molecular feature mapping
and virtual screening is not new and has already been applied
in a number of successful projects by us and other research
groups.17-19 One particular appeal of the method presented
here is the fact that both SAR modeling and focused library
design can be performed in one step by nonlinear mapping.
Traditional SAR models usually aim at identifying individual
parameters that have influence on molecular activity. The
SOM approach inherently considers all possible features in

Figure 1. Self-organizing maps showing the distribution of selectivity values [Ki (A1)/Ki (A2A)] of the initial 153-member library (a), and
the 192 virtual combinatorial products generated (b). Seed structure4 (cf. Scheme 2) was selected from neuron (5/3); seed structure5 (cf.
Scheme 2), from neuron (4/3).
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parallel, that is, in our case, the 150 elements of the
topological pharmacophore descriptor. The SOM uses an
adaptive weighing scheme (neuron vectors or centroids of
the receptive fields) to account for the individual contribu-
tions to the model. Selecting molecules from adjacent neuron
clusters to form a focused library is comparable to similarity
searching. Advantages we see in the SOM method are (i)
the possibility of visually selecting clusters, thereby avoiding
strict similarity threshold values; (ii) similarity searching is
performed by considering multiple molecules as pharma-
cophore “seeds”;20,21and (iii) visual comparison of compound
distributions, by which one can get an overview of the library
focusing process. The degree of library “diversity”, that is,
here coverage of topological pharmacophore space, can be
influenced by selecting compounds from more or less distant
SOM neurons. The method is fast, easily implemented, and
applicable to a large variety of medicinal chemistry projects.

It was designed to assist the medicinal chemist during the
hit-to-lead phase of drug discovery.

Certainly, this method for focused combinatorial library
design has limitations regarding the resolution power and
is, thus, probably confined to crude activity and selectivity
optimization. The activity profile of scaffold1 could not be
further improved during subsequent cycles using the available
set of 96 secondary amines selected from ACD (data not
shown). For fine-tuning of structures during lead optimiza-
tion, additional quantitative SAR models are needed, and a
significantly augmented set of building blocks for combi-
natorial exploration of chemical space will be essential.
Although the method seems to be restricted to hit-profiling
rather than lead optimization, it was demonstrated that our
SOM-based virtual screening procedure can be used to
rapidly and efficiently construct focused combinatorial
libraries and identify products with enhanced properties and
significant biological activity.
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Table 1. In Vitro Biological Activity of 17 Triazolopyridine Carboxylic Acid Amides1 versus Human A2A and Their
A1 Selectivity

Table 2. Average Activity and Selectivity Values of the
Initial Compound Library (N ) 153) and the Designed and
Tested Combinatorial Products (N ) 17)a

activity 〈Ki 〉/nM

A2A A1 〈selectivity〉 for A2A

initial library 102 (101) 860 (1154) 14 (19)
focused library 50 (93) 974 (1264) 33 (23)

a Standard deviations in brackets.
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