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A virtual screening procedure based on a topological pharmacophore similarity metric and self-organizing
maps (SOM) was developed and applied to optimizing combinatorial products functioningpasrergic
receptor antagonists. The target was the humarréceptor. A SOM was developed using a set of biologically
tested molecules to establish a preliminary structaivity relationship. A combinatorial library design

was performed by projecting virtually assembled new molecules onto the SOM. A small focused library of
17 selected combinatorial products was synthesized and tested. On average, the designed structures yielded
a 3-fold smaller binding constant-B3 vs ~100 nM) and 3.5-fold higher selectivity (50 vs 14) than the
initial library. The most selective compound obtained revealed a 121-fold relative selectivityfavith

Ki (A2a) = 2.4 nM, andK; (A1) = 292 nM. This result demonstrates that it was possible to design a small,
activity-enriched focused library with an improved property profile using the SOM virtual screening approach.
The strategy might be particularly useful in projects in which structure-based design cannot be applied
because of a lack of receptor structure information, for example, in the many projects aiming at finding new
GPCR modulators.

Introduction sional model of the receptor binding pocket, for example,
automated molecular docking, is hampered by the fact that

Novel selective purinergic receptor;jRntagonists might for most GPCR, such a model is unavailableherefore,

p'rowde a basis for the treatment of neurodegenerative we followed an entirely ligand-based approach. The starting
dlsease_é.The R receptor family belongs fto_ the class of point for the project was a set of 153 combinatorial products
G-protein couples receptors (GPCR) comprising the SUbtypeSderived from scaffold structuré (Scheme 1) with known
A1, Aoa, Az, and As that are activated by adenosine as their K; values for the two adenosine receptor subtypes ad
endogenous ligantf Adenosine acts as a neuromodulator, All 89 The idea was to rely on this information for the
possessing global importance in the modulation of molecular de.velopment of a preliminary structuractivity relationship
mechanisms underlying many aspects of physiological brain (SAR) model, which could be used to virtually synthesize
function by mediating central inhibitory effects. An increase novel combir;atorial products with improved activity and
in neurotransmitter release follows traumas, such as hypOXia’seIectivity for the Aa subtype. For identification of best-
ischemia, and seizures. These neurotransmitters are UItimatEI%uited building blocks R R, aﬁd R decorating scaffold
responsible for neural degeneration and neural death, WhiCh(Scheme 1), a new-fangled virtual screening procedure was

causes brain damage or death of the individual. Thg A L e
. . . followed, which is based on artificial neural networks (self-
receptor (409412 amino acids) was cloned from various . 11 .
organizing map, SOM§** and topological pharmacophore

species and_ has_emerged as a main targgt within _1he Psimilarity (CATS method)?
receptor family It is preferentially distributed in dopamine- .
. . ) . . 1. Encoding the set of tested compounds by the CATS
rich brain regions and coexpressed with tha&eptor, with . :

S ; . topological pharmacophore descriptor,
which it interacts in an antagonistic manfiek,a receptor > Traini ¢ 2 SOM for feat ina (SAR model
antagonists inhibit the motor depressant effects of dopamine ram!pgq a p or“ cature mapp:cng ( h model),
antagonists, such as haloperidol, which makes them of S !dentification of “seed” compounds from the SOM,

particular interest for treatment of neurodegenerative disor- 4- Variation of the seed by virtual library enumeration,
ders, such as Parkinson’s diseése. 5. Projection of the virtual library onto the SOM obtained

by step 2,

6. Selection of candidates for synthesis and testing (focused
library design),

“Tel: +41-616886227. Faxt-41-61 6886459, E-mail: matthias netiekoven@ |- Chemical synthesis and determination of in vitro activity
roche.com. (Kj), and

TPresent address: Institut rflOrganische Chemie und Chemische 8. Go to step 1 or terminate.
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D-60439 Frankfurt, Germany. Tel-+49-69 79829821. Fax:-+49-69 With the exception of step 7 of this scheme, optimization

79829826. E-mail: gisbert.schneider@modiab.de. takes place in silico. Synthesis and testing of the designed

Currently, the application of virtual screening and molec-
ular design approaches relying on a detailed three-dimen-
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Scheme 1. Synthesis of 5-Amino-1-aryl-[1,2,4]triazolo[1,5-a]pyridine-7-carboxylic Acid Amide Derivatil®es
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aReagents and conditions: (a) @-mesitylenesulfonylhydroxylamine, (ii)®&HO, (iii) KOH/MeOH, O;; b) AlMes, RiR:NH, dioxane, 9C0°C.

Scheme 2.Seed Structures Identified for Virtual Synthesds §) and the Most Aa-Selective Product Obtaine@)(Yielding
121-Fold Selectivity versus A
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2[Ki (A2a) = 2.4 nM, K; (A1) = 292 nM].

molecules is of great importance, because the results help (3) Virtual Screening. Building Block Retrieval. Sec-

to adjust the virtual screening process and provide the ondary amines for virtual coupling to scaffoldsand 5
necessary information enabling selection of molecular build- (Scheme 2) were selected from the Available Chemicals
ing blocks with a high possibility of revealing the desired Directory, ACD (Molecular Design Limited, San Leandro,
activity profile. To see whether the procedure can actually CA). The maximum molecular weight cutoff was 200;
be of use in the hit-to-lead optimization, we performed a amides were excluded. The initial hit list of 487 molecules
single optimization round, resulting in an average 3-fold was further reduced manually to a set of 96 chemically
increase of both bioactivity and selectivity compared to the tractable building blocks that were not included in the initial
initial combinatorial library. set of 153 products derived from scaffdld

Molecule Encoding.For SAR modeling by self-organiz-
ing networks, all molecules were represented by the CATS
pharmacophore descriptor, which is based on a topological
correlation of generalized atom typ¥sThe definition of
lipophilic, positive and negative charge centers, and hydrogen-
bond donors and acceptors followed the LUDI implementa-
tion.!* For five atom types, there are 15 possible pairs.
Distance between pairs of atoms was defined as the shortest
topological path connecting the two nodes in the molecular
graph. Distances up to 10 bonds were considered in the
present study, resulting in a 150-dimensional vector descrip-
tion of a molecule giving a relative frequency of atom type
pairs over bonds in the molecular graph. Raw counts were
scaled by the number of non-hydrogen atoms present in a
molecule. This molecular representation is rotation- and
commencing with the regioselective N-amination of the translation-invariant, and thus, the problem of pairwise
pyridine nitrogen withO-mesitylenesulfonylhydroxylamine. ~ structural alignment was avoided. The CATS descriptor has
The intermediate can be condensed with a wide variety of been shown to be suited for database similarity searching
aldehydes (substituted benzaldehydes, furfurals, pyridineand de novo design in the absence of three-dimensional
carboxaldehydes, and thiophene carboxaldehydes), and subconformer model$21> The idea of the topological phar-
sequent cyclization and oxidation under basic conditions macophore space reflects Carhart's concept of atom-pair
yielded triazolo-pyridine methyl ester derivativ@# yields descriptorg?
from 18 to 51%. Conversion to the desired triazolopyridine  Self-Organizing Feature Map (SOM). For graphical

Materials and Methods

(1) Library Synthesis. Triazolopyridine derivatives have
previously demonstrated their ability to potently and selec-
tively bind to the human A receptor. Preliminary results
were obtained from 5-amino-7-aryl-[1,2,4]-triazolo-[1,5-a]-
pyridines® To further investigate the potential of close
analogues, 5-amino-1-aryl-[1,2,4]triazolo[1,5-a]pyridine-7-
carboxylic acid amide derivativeswere synthesized with
an analogous protocol (Scheme®1).

The required 2,6-bis-amino-pyridine-4-carboxylic acid
methyl ester2 can be synthesized according to literature
procedured? and the subsequent conversion to the 5-amino-
1-aryl-[1,2,4]triazolo[1,5-a]pyridine-7-carboxylic acid methyl
ester derivative8 follows a three step/one pot procedure

carboxylic acid amide derivative8 was conveniently
performed by heating a mixture of es8with the respective
amine, which was premixed with AIMgin a solvent-like

display and feature mapping, the molecule distribution in
the 150-dimensional pharmacophore space were projected
onto a plane spanned by (8 8) 64 neurons (clusters) of a

dioxane for several hours. The purification of the library SOM. Kohonen’s algorithm was applied to perform the
members was routinely performed by preparative reversed-mapping procedur®,as implemented in the NEUROMAP
phase HPLC. packagél As a result of this nonlinear mapping procedure,
(2) Biological Testing.The assessment of in vitro binding  each neuron represents a cluster of molecules having certain
data for human Ay and A was performed in analogy to features in common, that is, the molecules belonging to its
procedures described in the literatdre. “receptive field” are more similar to each other than to any
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Figure 1. Self-organizing maps showing the distribution of selectivity valug@qA1)/K; (A24)] of the initial 153-member library (a), and
the 192 virtual combinatorial products generated (b). Seed struétiafe Scheme 2) was selected from neuron (5/3); seed strust(ake
Scheme 2), from neuron (4/3).

— b W a1 SN ]G0
— D e SN 100

other molecule cluster in the data set. SOM developmentis Having fixed position Rin scaffold1, the next step was
comparable to Voronoi tesselation of the high-dimensional the combinatorial optimization of the secondary amine
data space, reflecting a vector quantization process. Forrepresenting Rand R. A set of 96 secondary amines that
focused library design, virtual combinatorial products were were not contained in the initial set of 153 products derived
projected onto the SOM, and the molecules falling into the from scaffold1 was retrieved from the ACD. Then, seetls
receptive fields of selected neurons (in our project, the and5 were assembled with the 96 secondary amines, and
neurons (3/3), (4/3), and (5/3) shown in Figure 2 became each virtual product was encoded by the topological phar-

members of the focused library. macophore descriptor and projected onto the SOM. The
distribution of the compounds is shown in Figure 1b. As
Results and Discussion expected, the majority are located close to the target area.

] ] ] From the 192 virtual products, 9 fell into the respective field
The first step of our virtual screening procedure wWas o neyron (3/3), 7 molecules were assigned to neuron (4/3),
molecule encoding. Using the CATS topological pharma- 414 6 compounds fell in neuron (5/3). Of the 22 virtual
cophore descriptor, all available and tested 153 moleculesproduct molecules, 14 contained the seed strudpend 8
were converted to a 150-dimensional vector representation.jrtyal products contained seed structwteFrom the 22
Then, a planar (& 8) SOM was developed with these data, yjrual product molecules, 5 had to be eliminated because
that is, the distribution of molecules in the 150-dimensional f ynavailability or structural features considered to cause
space was projected onto the plane by the SOM algorithm. aqverse side reactions under the general reaction protocol
The projection is topology-preserving, which means that of the respective amines. These remaining 17 compounds
molecules that are close to each other in the two-dimensionalformed a small focused library that was subsequently

projection are also in close vicinity in high-dimensional synthesized and tested for their activity igs&nd A binding
space. Each of the 64 neurons forms a “receptive field” assays. Table 1 summarizes the results.
containing molecules having certain pharmacophore features average, the small library of 17 structures displayed a
in common. The averaged selectivity values of the molecules, 3_o1d [ower binding constant¥33 vs~100 nM) and 3.5-
Ki (A))/Ki (Aza), belonging to each receptive field are fo|q4 higher selectivity (50 vs 14) than the initial library. The
represented in a color code in Figure 1a. most selective compoun8, of the product library has a 121-
The adjacent neurons (3/3), (4/3), (4/4), and (5/3) contain fold relative selectivity for Ax with K;i (Aza) = 2.4 nM,
the most selective A antagonists, as indicated by yellow andK; (A;) = 292 nM. This result demonstrates that it was
and red coloring (Figure 1a). Because of the observation thatpossible to design a small, activity-enriched focused library
a small area of pharmacophore space seems to represemwith an improved property profile using our virtual screening
characteristic molecular features responsible for relative A approach (Table 2). The strategy might be particularly useful
selectivity, we decided to define neurons (3/3), (4/3), and for projects in which structure-based design cannot be applied
(5/3) as the “target area” for molecular design. The idea was because of a lack of receptor structure information, for
to virtually generate new compounds using “seed structures” example, in the many projects aiming at finding new GPCR
as combinatorial templates that are representatives of themodulators.

respective fields of these neurons. Seed structureas The idea of using SOMs for molecular feature mapping
selected from neuron (5/3); seed structGrerom neuron and virtual screening is not new and has already been applied
(4/3) (Scheme 2). The thiazole ring of seddand the in a number of successful projects by us and other research
bromofuran moiety of see@ in position R of scaffold 1 groupst’~'° One particular appeal of the method presented

were the only two substituents found among the set of here is the fact that both SAR modeling and focused library
molecules clustered in neurons (3/3), (4/3), and (5/3). We design can be performed in one step by nonlinear mapping.
concluded that these two building blocks might be respon- Traditional SAR models usually aim at identifying individual

sible for the relatively high selectivity of the compounds for parameters that have influence on molecular activity. The
the Aga receptor. SOM approach inherently considers all possible features in
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Table 1. In Vitro Biological Activity of 17 Triazolopyridine Carboxylic Acid Amide& versus Human 4. and Their
A; Selectivity

Neuron (3/3) Neuron (4/3) Neuron (5/3)
Ki AzA Sel. vs. Ki A2A Sel. vs. Ki AgA Sel. vs.
@) A @) A @) A
\OLC;"’}-GL& 29 45 QJ\Q‘}—{J\ 39 65 CL i< 104 19
NH, NH, NH,
MeO~ Mﬁo\
/Oj\i;c}—{,l& 63 29 OO, 24 121 Oy 51 66
NH, N, NH,
MeO. MeO.
QLQV"J—{IB 17 32 bJ\Q@—GL& 117 53 b 4y 84 53
NH, n, NH,
\T)LE;Q—(IG 365 CJ\Q’}—Q 4 6 | O 0 2w
H, NH, NH,
?" T, 32 40 ?j\@” (O, 89 17
NH, NH,

YOLCQ—(I 5S

véj\igt”y—{,lm 16 44
H,

\/P‘LQC}—{] 87 31
NH,

Table 2. Average Activity and Selectivity Values of the It was designed to assist the medicinal chemist during the
Initial Compound Library N = 153) and the Designed and hit-to-lead phase of drug discovery.

Tested Combinatorial Productl & 17y Certainly, this method for focused combinatorial library

activity [KillnM design has limitations regarding the resolution power and
Aoa Ay Selectivity for Asa is, thus, probably confined to crude activity and selectivity
initial library 102 (101) 860 (1154) 14 (19) optimization. The activity profile of scaffold could not be
focused library 50(93) 974 (1264) 33(23) further improved during subsequent cycles using the available
a Standard deviations in brackets. set of 96 secondary amines selected from ACD (data not

shown). For fine-tuning of structures during lead optimiza-
parallel, that is, in our case, the 150 elements of the tion, additional quantitative SAR models are needed, and a
topological pharmacophore descriptor. The SOM uses ansignificantly augmented set of building blocks for combi-
adaptive weighing scheme (neuron vectors or centroids of natorial exploration of chemical space will be essential.
the receptive fields) to account for the individual contribu- Although the method seems to be restricted to hit-profiling
tions to the model. Selecting molecules from adjacent neuronrather than lead optimization, it was demonstrated that our
clusters to form a focused library is comparable to similarity SOM-based virtual screening procedure can be used to
searching. Advantages we see in the SOM method are (i)rapidly and efficiently construct focused combinatorial
the possibility of visually selecting clusters, thereby avoiding libraries and identify products with enhanced properties and
strict similarity threshold values; (ii) similarity searching is significant biological activity.
performed by considering multiple molecules as pharma-
cophore “seeds®?'and (jii) visual comparison of compound Acknowledgment. The authors are grateful to Drs. A.
distributions, by which one can get an overview of the library Alanine, A. Flohr, R. Jakob-Roetne, R. Norcross, and C.
focusing process. The degree of library “diversity”, that is, Riemer for helpful discussions and for support during the
here coverage of topological pharmacophore space, can bereparation of this manuscript. Technical assistance is
influenced by selecting compounds from more or less distant gratefully acknowledged from C. Kuratli. This research was
SOM neurons. The method is fast, easily implemented, andsupported by the Beilstein-Institut zuf felerung der Che-
applicable to a large variety of medicinal chemistry projects. mischen Wissenschaften, Frankfurt.
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